

Interfering thresholds of radio services and spectrum emission masks from PLT, CATV and ADSL

Dr. Haim Mazar (Madjar) RF Spectrum Department, Israeli Ministry of Communications Tel Aviv, Israel <u>http://people.itu.int/~mazar/</u>

7 November 2011

Purpose / Motivation

- Provide trigger levels & RF Emission Masks
- Simplify regulation and calculations
- Topic of RF community interest; essential to broadcasting & land mobile services
- Used at RRC 06 (GE 06) planning, PLT ITU-R Recommendations and reports
- Advances penetration of new technologies

Outline

- Triggers define compatibility between radio systems
- Thresholds calculated as power and field-strength
- Thresholds to protect radio services from interfering incidental radiators: PLT, cable installations and ISM
- Assuming minimum distance from interferer to victim, the spectrum emission mask can be calculated
- The study offers practical values
- Measurements of noise levels & interference support calculations & provide evidence to the methodology

Criterion to Protect Radio Services Degradation (dB) = $10 \log \left(\frac{Interference + Thermal_Noise}{Thermal_Noise} \right)$

Interference level relative to receiver thermal noise (dB)	Resultant degradation in sensitivity (dB)
0	3
6	1
-10	0.5
-20	0.05

Assumptions to Calculate Thresholds

- Receiver noise floor dominated by thermal noise: no man-made or other noises
- The tolerated desensitisation of the terrestrial receivers is 0.05 dB, the allowed interfering signal is 20 dB below the thermal noise: therefore, the trigger power level is KTBF-20 dB
- Cellular Terminals' and broadcasting receivers' isotropic antenna gains: Gr (dBi) = 0 and no feeder loss (LF)
- Macrocellular BTS antenna gain: Gi (dBi) =15 and LF (dB) =3
- Fixed stations ant gain: Gi (dBi) = 15 and LF (dB) =3
- Radiolocation stations Gi (dBi) =23 and LF (dB) =3
- Noise Figure (F) of 5 dB; typical to victim Rx
- RF reference 460 MHz

Distance from Incidental Radiators 2 Victims

- 1 m between incidental radiator (PLT, CATV, ADSL, ISM) and cellular or broadcasting terminals, indoor
- **10 m** to macrocellular base-stations or fixed stations or TV ant. outdoor
- 100 m to Radiolocation stations, outdoor

Power Threshold levels (PER 1 MHz) KTBF/1MHz = -114 + 5 = -109 dBm/MHz(1)KTBF(1MHz)-20dB = -109dBm - 20dB = -129dBm/MHz(2)As 0 dB ant gain @ cellular handsets & broadcasting receivers, this is also the PSD to protect terminals from radiators (MHz) $P_{\text{terminals}}$ (1 MHz) = -129 dBm/MHz (3)To calculate power @ BTS Rx, Gi(dBi)=15 & LF(dB)=3 are included, to get power trigger @ ant input: **P_{BS} (1MHz)**=-129dBm/MHz- 12 dB=-**141 dBm/MHz** (4) power level @ the radiolocation (RL) Rx, Gi(dBi)=23 & LF(dB)=3: **P**_{RI} (1MHz)=-129 dBm/MHz- 20dB=-149 dBm/MHz (5)

Field Strength Threshold levels (per 1 MHz) Conversion of ant input power (dBm) to the FS(dBµV/m) :

PoyntingVector:
$$(\vec{E}x\vec{H}) = \frac{1}{\mu_0}(\vec{E}\times\vec{B}) = \frac{E_o^2}{Zo} = pfd \ E_o^2 = P_r \times \frac{480\pi^2}{g\lambda^2}$$

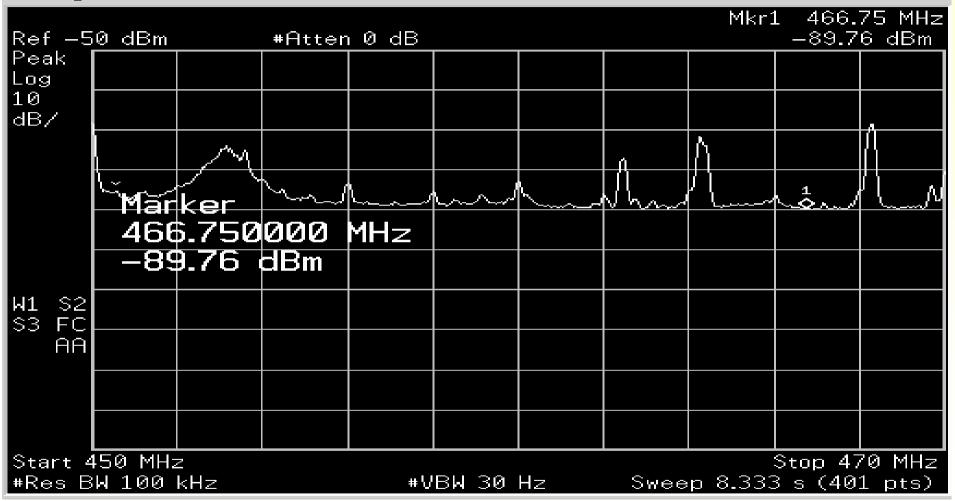
$$P_{r} = pfd \times A_{e} = \frac{E_{o}^{2}}{Zo} \times \frac{g\lambda^{2}}{4\pi} = \frac{E_{o}^{2}}{120\pi} \times \frac{g\lambda^{2}}{4\pi} E_{o} = \sqrt{30\frac{P_{r}}{g}} \times \frac{4\pi}{\lambda}$$

$$P(dBm) = E(dB\mu V/m) - 77.21 - 20Log f(MHz) + Gi - LF \qquad (6)$$

$$-129 (dBm) = E(dB\mu V/m) - 77.21 - 53.25 \qquad (7)$$

power noise level @ Rx input (same noise figure) is identical, so different FS due to ant gains @ BTS, fixed & radiolocation

$$\begin{array}{ll} {\sf E}_{\rm terminal} \left(1 {\sf MHz} \right) = & 1.5 \left(d {\sf B} \mu {\sf V/m} \right) & (8) \\ {\sf E}_{\sf BS} / {\sf MHz} = {\sf E}_{\rm fixed} / {\sf MHz} = 1.5 \left(d {\sf B} \mu {\sf V/m} \right) - 12 d {\sf B} = -10.5 \left(d {\sf B} \mu {\sf V/m} \right) & (9) \\ {\sf E}_{\sf RL} / {\sf MHz} = 1.5 \left(d {\sf B} \mu {\sf V/m} \right) - 20 \ d {\sf B} = -18.5 \left(d {\sf B} \mu {\sf V/m} \right) & (10) \end{array}$$


Allowed incidental radiators' Spectrum Emission Masks

Power and field-strength per 1 MHz	Indoor Cellular terminal, radio or TV	Outdoor Macrocellular base-station and fixed station	Outdoor Radiolocation station
<i>Power Trigger</i> <i>Level</i> (dBm)	-129	-141	-149
Field-strength Trigger Level (dBµV/m)	1.5	-10.5	-18.5
Max incidental radiator peak- power (dBm)	-103 (1meter)	-95 (10meter)	-83 (100 meter)

incidental radiators' mask depends on RF, as propagation varies with RF; table refers to 460 MHz, using free-space propagation model

Measuring Thermal and Man-Made Noise

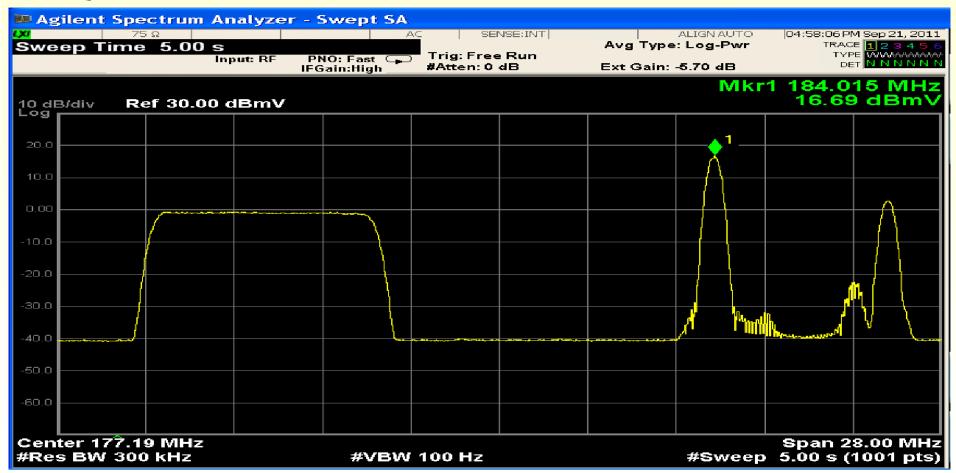
Agilent 00:35:38 Feb 20, 2003

UHF results in rural area (Beit Yizhak)

Interfering thresholds of Radio Services COMCAS 7Nov11 10 of 14

mazarh@moc.gov.il; mazar@ties.itu.int

Measuring Sensitivity Degradation for GE-06

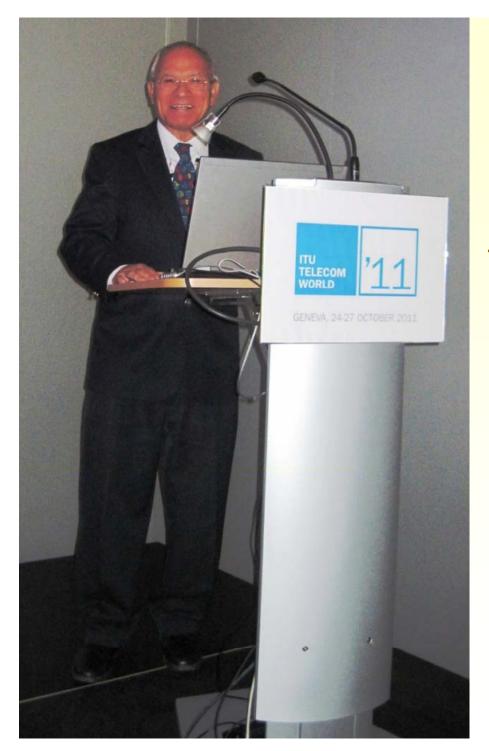

Interference Level dBm	Equal noise level calculated dBm	Sensitivity measured dBm	Sensitivity degrade measured dB	Sensitivity degrade calculated dB
No interference	-111	-127	0	0
-114	-109	-125	-2	-1.8
-111	-108	-123	-4	-3
-108	-106	-122	-5	-4.8
-105	-104	-120	-7	-7

CDMA 1X interfered by DVB-T OFDM

Interfering thresholds of Radio Services **COMCAS** 7Nov11 11 of 14

mazarh@moc.gov.il; mazar@ties.itu.int

Interference from CATV QAM 256 CATV is similar to the white noise



CATV QAM 256, white noise (below and above the QAM) & analog TV

Interfering thresholds of Radio Services COMCAS 7Nov11 12of 10

Conclusion

- A simple and productive methodology to evaluate RFI
- Thresholds & emission masks may define signal leakage tasks, to deny degraded performance to radiocommunications
- Methodology can be generalised to avoid interference from UWB & mutual interference between radio services; the only change is the protection criterion; instead of I/N = -20 dB; it should be I/N = -6 dB

Thank you

Hyperlink to the COMCAS 11 full-text

Dr. Haim Mazar (Madjar)

Ministry of Communications, Israel Vice-Chair ITU-R Study Group 1 (Spectrum Management)

<u>mazarh@moc.gov.il</u>, <u>mazar@ties.itu.int</u> <u>http://people.itu.int/~mazar/</u>